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portant in determining the frequency behavior of the

eigenvalues of the periodic structure.

VII. CONCLUSIONS

We have presented wide-band equivalent circuits of

closely resonant irises in rectangular waveguides. Poles

and residues as functions of the geometry are provided so

that the user need not refer to a computer program.

The above equivalent circuits constitute the building

blocks of the network representation of an infinite wave-

guide periodically loaded with resonant irises, which we

have investigated. The particular cases of capacitively and

inductively periodically loaded waveguides are recovered

from the general solution, The same network approach

can be applied to waveguides loaded with other discon-

tinuities.

mFB~NcEs

[1] M, J. A1-Hakkak and Y. T. Lo, “Circular waveguides and horns
with anisotropic and corrugated boundaries,” Department of Elec-
tricrd Engineering, Engineering Experiment Station, University of
Illinois, Urbana, IL, Antenna Lab. Rep. No. 73-3, 1973.

[2] Y. T. Lo, “Feed investigation for large Thomson scatter radq”

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Dep. Elec. Eng., Univ. of Illinois, Urbana, IL, Aero, Rep. No. 23,
Oct. 1967.

R. Mittra and S. Lee, Ana&tical Techniques in the Theoty of Guided
W’sues. New York, MacMillan, 1974.

M. Navarro, “On waveguides with anisotropic and corrugated
boundaries: Ph.D. dissertation, Elec. Eng. Dep. Univ. Illinois,
Urbana, IL, 1976.

J. Brownj “Propagation in coupled transmission line systems;
Quant. J. A4ech. AppI. Math., vol. XI, pt. 2, pp. 235-243, 1958.

T. E. Rozzi and W. F. G. Mecklenbrauker, “Wide-band network
modefing of interacting inductive irises and steps,” IEEE Trans.

Microwave Theo~ Tech., vol. M’IT-23, pp. 235-245, Feb. 1975.
T. E. Rozzi, “A new approach to the network modeling of capaci-

tive irises and steps in waveguide; Int. J. Circuit Theory Appl., vol.
3, pp. 339-354, Dec. 1975.

T, Rozzi, “Network analysis of strongly coupled transverse aper-
tures in waveguidesj” Int. J. Circuit Theoiy Appl., vol. 1, pp.
161–178, June 1973.

L. Lewin, Aduanced Theory of Waueguides. London: Illiffe; 1952,
p. 88.

[10] R. J. Mailloux: “Radiation and near field coupling between two
co-linear open-ended waveguides,” IEEE Trans. Antennas Propa-
gat,, vol. AP-17, pp. 49-54, Jan. 1969.

[11] A. Jamieson and T. Rozzi, “Rigorous analysis of cross-polarization
in flange-mounted rectangular waveguide radiators,” Electron.
Lett., vol. 13, no. 24, pp. 742-744, Nov. 1977.

[12] R. Collin, Field Theory of Guided Waues. New York: McGraw-Hill,
1962, p. 348.

Transmission Characteristics and a Design
Method of Transmission-Line Low-Pass

Filters with Multiple Pairs of Coincident
Zeros and Multiple Pairs of Coincident Poles
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Abstract-The transmission cfwacteristka and a design methed are

presented for a tranamidon-fine low-pas fiiter with multiple pafrs of

coincident zeres in the finite frequency of the passband and multiple pairs

of coincident poles in the ftite frequeney of the ztopband and for a

trznamkion-fine low-paw fiiter with Butter’worth characteristic in the

pazaband and multiple pairs of coincident poles in the fink frequency of

the stopband. The former transmission-line low-pass fflter shows an im-

proved skirt attenuation performance and delay characteristic than a

Chebyshev tranamkion-line low-pass filter in the same network degree.

The latter type of transmission-fine low-pass fiiter shows an improved skirt

attenuation performance in comparison to a Butterworth transmission-fine

low-pass fflter in the same network degree, it is positioned about in the
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ndddte between a Butterworth type and a Chebyshev type, the delay

characteristic is improved considerably in comparison to the Chebyshev

type, and the characteristic is C1OWto that of the Butterwortb type.

With this deaii methc@ the connecting unit elements in addition to the

stubs contribute to the attenuation response. The dez@ example is shown

on the basis of a concrete specifhtiom and it is shown that the obtained

atteuaztion ztrictfy fuffiis the specifkation.

I. INTRODUCTION

R ECENTLY, Levy [1] has shown a lumped element

rational function having single transmission zeros in

one ~oint of the stopband of a Chebyshev low-pass filter

which shows improvement of the skirt selectivity over an

ordinary Chebyshev low-pass filter. By use of cross cou-
pling, the realization of a high frequency filter is executed,

Further, M. C. Agarwal [2] has proposed a lumped ele-

ment rational function having multiple pairs of coincident

0018-9480/80/0800-0865$00.75 @1980 IEEE
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poles in one point of the stopband for a Chebyshev

low-pass filter.

In this paper, a transmission-line low-pass filter having

multiple pairs of coincident zeros in a finite frequency of

the passband (in addition to the zeros at the origin) and

multiple pairs of coincident poles in a finite frequency of

the stopband (including single pairs of poles), which in

regard to the attenuation characteristic shows a different

passband from filters shown in the literature [1] and [2],

but a similar stopband, is treated, and its transmission

characteristic and a design method are described. Further,

as a filter resembling those shown in the literature [3] and

[4], a transmission-line low-pass filter having the Butter-

worth characteristic in the passband and having multiple

pairs of coincident poles in the finite frequency of the

stopband is treated. For the treated transmission-line

low-pass filters, the contribution of connecting unit ele-

ments to the attenuation response in addition to stubs is

taken into consideration.

The conformal mapping is used for the complex

frequency plane of the characteristic function of a lumped

element Butterworth low-pass filter and the complex

frequency plane of the characteristic function of the above

transmission-line low-pass filter is derived, and when the

maximum attenuation in the pass-band and the minimum

attenuation in the stopband are given as specifications,

design equations under consideration of strict fulfillment

of this specification are derived.

The former transmission-line low-pass filter has an im-

proved cutoff characteristic than a Chebyshev transmis-

sion-line low-pass filter [5] for the same network degree, it

is positioned about in the middle between a Chebyshev

type and an elliptic-function type [6]–[8], and the delay

characteristic is improved over these two type of filters.

The frequency of poles and that of zeros are decided by

the assignation of a network degree, a number of connect-

ing unit elements, an order of poles and zeros, a passband

cutoff frequency, a maximum attenuation in the passband

and a minimum attenuation in the stopband, but inversely

frequencies of poles and zeros can be assigned arbitrarily.

The application in case of assigning poles and zeros can

be exemplified for a multiharmonic rejection filter [12]. It

does appear that this type of the filter can be adoptable as

that having a different transmission characteristic from

ordinary filters.

A design example for the transmission-line low-pass
filter is shown on the basis of concrete specifications.

Also, it is shown that this type of the filter treated in this

paper has a smaller spread of elements than the elliptic-
function type filter for the same bandwidth.

The latter transmission-line low-pass filter has an im-

proved cutoff characteristic than a Butterworth transmis-

sion-line low-pass filter for the same network degree, it is

positioned about in the middle between the Butterworth

type and the Chebyshev type, the delay characteristic is

improved considerably over the Chebyshev type for the

entire passband, and it resembles and approaches the

delay characteristic of the Butterworth type.

Att.

(dB)

ami.

amaxEd.................:,W...-.
0 jfi.l 3$2,3JL Yh NJ 3% ]52

Frequemy [S-plane)

Fig. 1. Attenuation response of the transmission-line low-pass fitter
with zeros of m’th order at *J”b!Oand poles of mth order at * j$lP.

II. TRANSMISSION LINE FILTER WITH MULTIPLE

PAIRS OF COINCIDENT ZEROS IN THE PASSBAND AND

MULTIPLE PAIRS OF COINCIDENT POLES IN THE

STOPBAND

A. Derivation of Design Equations (Transformed Equations)

When the lengths of the Iossless transmission-line all are

1/4 of the wavelength corresponding to the standard

frequency fo, Richards transformation [9] becomes as

follows :

S =j tan (fif/2jO) (1)

so that the actual frequency range (f-plane) is trans-

formed to the S-plane. When r connecting unit elements

contribute to the attenuation response, the characteristic

function of the transmission-line filter has poles of (r/2)th

order at S= * 1.0. Therefore, as shown in Fig. 1, when a

transmission-line low-pass filter with the attenuation char-

acteristic in the S-plane has zeros of m’th order at ~j~o

in the passband, zeros of lth order at the origin, poles of

mth order at +jflP in the stopband, and poles of qth order

at the infinite point, the relation between the network

degree n and the number of connecting unit elements r is

given by

n=2m+q+r=2m’+l, r=2p. (2)

It is necessary to consider the (2) in order to derive the

treated transmission-line low-pass filter from the lumped

element Butterworth low-pass filter by using the confor-

mal mapping.

When for a lumped element Butterworth low-pass filter

with a network degree of nth degree the maximum
attenuation in the passband a~,X(dB) and the minimum

attenuation in the stopband afin(dB) are given specifica-

tions, with the passband cutoff frequency jl.0 and the

stopband cutoff frequency jkl, and the frequency jtX is

assumed to provide an arbitrary attenuation ax(dB), then

the following relation [10] holds:

kl= [(lOO*a~U- l)/(IOO”l&M=– 1)]1’2” (3)

tx= [(loo’1~– 1)/(loo”’am”- 1)]1’2n. (4)

When the complex frequency plane of this lumped ele-

ment Butterworth low-pass filter is taken as the t-plane,
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TABLE I
CORRESPONDING RELATION AMONG EACH PLANE

(n/2 –p – m)th, and mth order at tjl.0, t jhl, *jh2,

respectively, in the W-plane shown in Fig. 4, for which the

~ Of(lO)’refertOtheA
transformed equation is given by (10). (For the derivation

~jdQm, ~j.Qa ~j% ~jo~. 11.o -“ . (W’+ l~(W2+ h;)”’2-P-rn(W2+ h;)m(W2+ w:)-m’

the transformed equations from the t-plane to the com-

plex frequency of a lumped element low-pass filter with

zeros of m’th order in the passband ($-plane in Fig. 2)

become as follows [1 1]:

( .) -(1-%’)’%<n-’nl’ [2+r#2 m’_ (5)

c;= (~ –2m’)n–2m’(2m’)2m’/~n (7)

Q;= (n –2m’)L?#/n (8)

where t= Z’ + jfl’ applies. $2’0 is zeros of m’th order in the

~-plane, L1’~ is the frequency providing the maximum

attenuation (peak value) in the passband of the &plane.

The passband cutoff frequency is normalized to jl.O.

When the transformation to the {-plane shown in Fig. 3

is executed on the &plane for the corresponding relation
of Table I, the transformed equation becames

~’=fyf/(’-l. (9)

WB is the stopband cutoff frequency in the &plane. Next,

the separation transformation is executed so that poles of
n/2th order at *j 1.0 in the ~-plane become poles of pth,

=((’+ 1)”/’({2+ {:)-m’. (lo)

Finally, the transformation to the S-plane shown in Fig. 5

is executed with (11) for the corresponding relation of

Table I

S2=(h; –1)/(lT’2+h;), S= X -tjQ. (11)

Poles at S = * 1.0 have pth order, poles at Y jflP have mth

order, poles at the infinite point have q( = n – 2m – 2p)th

order, zeros at kj~o have m’th order, and zeros at the

origin have 1(= n – 2m’)th order.The S-plane is thus the

complex frequency plane for the characteristic function of

the transmission-line low-pass filter to be obtained, and

the (2) is established.

By use of the corresponding relation in Table I and (9)

to (11), the direct transformed (12) from the $-plane to the

S-plane can be derived

(h;-l) ~/z-~’(~ -2_ ~y(s-2jn/2-p-m

.(s-’+fl;’)m(s-’+sl)’m-m’

= Qg-2m’Q&’j [fn-2m’(~2 + ~2 m’
0) ]. (w

As the passband cutoff frequency j 1.0 in the &plane

corresponds to the passband cutoff frequency j~~ in the

S-plane, hl is obtained from (12). When the obtained hl is
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substituted into (12)

S-”(1 – S’y(l +f(py’yl +Q7@-m’

is obtained, and by use of (5)

s2m’-”(l -s’y(l+Qp-2s2)m( l+ Q;2s2)-m’

is obtained. The (14) is the direct transformation from the

t-plane to the S-plane.

When here the passband cutoff frequency ~~ in the

actual frequency range (j-plane) corresponding to the

passband cutoff frequency ~~ in the S-plane or the band-

width W (70) (in regard to jO) in case of regarding lowpass

filters as bandstop filters, is given

(15)

is obtained from (1).

As the frequency j~~ providing the maximum attenua-

tion in the passband of the .$-plane corresponds to the

frequencyjfd~ ~providing the maximum attenuation in the

passband of the S-plane, the (16) is obtained from (13) by

use of (6) to (8)

where

.,=(&j-2m’’”’(~::~”’
Q;_ Q2 m/r7a’

ml

Q;– Q: “

(17)

The characteristic function K(S) in the S-plane is ex-

pressed as

K(S) =
~Ksn-2m(s2 + Q2)m’

(1 - Sz)p(sZ+Q;)m
(18)

where CK is a real constant. Moreover, the operating

attenuation function L(jfJ) is expressed as

L(jfl)= 10log[ 1 +lK(jKl)12]. (19)

By differentiation of (19) with $?, the frequency fl~l pro-

viding the maximum attenuation in the passband and the

frequency 0~2 providing the minimum attenuation in the

stopband can be obtained, and they are the positive

solutions of the following three degree equation in regard

to f12

q(f12)3 + [ n – 2m + (2p – n)Q~ + (2m’ – q) Q~](Q2)2

+ [(2rn +2m’ – n)Q~– n~~ + (n –2m’ –2p)f@~]a2

+ (n – 2m’)Q&~=O (20)

with q = n – 2m – 2p. Equation (20) has two positive solu-

tions and one negative solution in regard to 02. The

smaller of the positive solution is taken as fl~l, and the

larger one as 0~2. Further, as the attenuation L(jO~)

occurring at the passband cutoff frequency j“~~ must

become am=(dB) of the specification and the minimum
attenuation L(jfil~2) in the stopband must fulfill ati(dB)

of the specification

lK(ji2~)12= 10°’”m~- 1 [K(jQm2)[2= 1O’J’I”’–– 1

(21)

are established. By use of (3), the relation between !ilP and

f2~2 is derived as

fy=(u2Qi2+Q2)/( u2+l) (22)

from (21), where

(23)

Accordingly, when a~=, ati, and a~ are specified and m,

p, and m’ are given, fl~l, fl~2, fro, and !JP can be obtained

from (16), (20), and (22). By use of the obtained flP and

flo, the stopband cutoff frequency and the frequency

providing the arbitrary attenuation (the frequency in the

range flo <0< !2P) in the S-plane can be obtained from

the t-plane (by use of values obtained by (3) and (4)) by

means of (14). In this case, the attenuation at fi?~l and fl~2

sufficiently fulfills the specification.

B. Relation Between the Specijlcation and the Skirt

Attenuation

Since the stopband cutoff frequency jkl in the t-plane

corresponds to the stopband cutoff frequency jfl~ in the

S-plane, fl~ is obtained from (14) as follows:

(B )( BP)- OI1(BO~~m’-n fi?’+1 p 1–~’~-’ ‘n-K k-n ~’~-z_l)m’

(24)

where

Kol = ~;~’-”(il; + l)P(l –fl~KIP-2)rn(@~2– I)-m’.

(25)

As k; is decided by am= and am of the specification as

shown in (3), the (24) shows the relation between the

specification and the network degree n, the number of

connecting unit elements r( = 2p), and the stopband cutoff
frequency fl~ (the skirt selectivity). Now occurs the prob-

lem of how to decide the order m’ of the zero point flo in

the passband. For this, it is sufficient to obtain the m’

which provides a minimum fl~ when n is held constant in

(24). In regard to the various values of n, the consolida-

tion of the results of actual calculations shows that the

best skirt selectivity is obtained when m’ is decided as

follows :

m’=(n– 1)/4, for n=4n’+1

m’= (n –2)/4, for n=4n’+2

m’=(n + 1)/4, for n=4n’+3

m’= n/4, for n = 4n’+ 4, n’= 1,2 37 . . . . .

(26)
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Fig. 6. Relation betwwm k and fl~.
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k
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I
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Fig. 7’. Relation between k and $JB.

When here the number of comecting unit elements

r( = 2p) = n/2 is taken for an even n, r = (n – 1)/2 for an

odd n, and ~~ is 1 (j~ = 0.5&), k( = k;) specified by the

specification and the stopband cutoff frequency fl~ is
shown by Figs. 6 and 7 in the graphic form for n = 5 to 16.

The order m’ of fdo is decided according to (26), and when

the order m of flP is 1 or 2, $ilB is calculated from (16),
(20), (22), and (24). The network synthesis is possible by

deciding the characteristic function K(S), obtaining the

operating transfer factor S~(S) from the relation IS’B(S)12

= 1 + IK(S)12, and obtaining the driving-point impedance

ZI1(S) or the admittance Yll(S) from K(S) and SB(S).

869

80 ~

Fig,

~hB

, 8. Comparison of skirt attenuation performance (n = 12).
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Fig. 9. Comparison of delay characteristics (n = 12).

C. Comparison of the Skirt Selectivity and Comparison of

the Delay Characteristic

The skirt selectivity of the transmission-line low-pass

filter treated in this chapter and that of the Chebyshev

transmission-line low-pass filter [5] and that of the trans-

mission-line filter having equal ripple response in both

passbands and stopbands (elliptic-function type) [6] are

compared. When the network degree n is 12th degree, the

number of connecting unit elements r is 6, the maximum

attenuation am= in the passband is O.l(dB), and the

passband cutoff frequency ~~ is 1, in each filter, the

relation in the S-plane between the stopband cutoff

frequency fl~ and the minimum attenuation atifi(dB) in

the stopband for each low-pass filter can be shown graphi-

cally as shown in Fig. 8. The skirt selectivity for the filter

treated in this chapter is inferior to the elliptic-function
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type for m =2 as well as m = 1, but it is improved over the

Chebyshev type, and it is positioned about in the middle

between these two types.

Next, the delay characteristics are compared. For n =

12, r=6, ~~=1, am== 0.5(dB), and aa = 40.O(dB), the

delay characteristics for the actual frequency range (~-

plane) of each filter are shown in Fig. 9. The delay at each

frequency is normalized by the delay occurring at j= O

(!2 = O). For m= 2 as well as m= 1, the delay characteris-

tics have the smooth response and are improved over the

Chebyshev type and the elliptic-function type. Further-

more, Fig. 9 also shows the delay characteristic for n = 12,

m = 1, m’= 3, and r = 8 (the number of connecting unit

elements is increased by 2 while the other conditions are

unchanged), and it can be seen that the delay characteris-

tic is improved over the case of r= 6, and that the contri-

bution of connecting unit element to the delay character-

istic is larger than that of stubs.

III. TRANSMISSION-LINE LOW-PASS FILTER WITH

MULTIPLE PAIRS OF COINCIDENT POLES IN THE

STOPBAND

A. Derivation of Design Equatiom (Transformed Equations)

A transmission-line low-pass filter as shown in Fig, 10

with Buttenvorth characteristic in the passband, poles of

mth order at ~j!ilP in the stopband, and poles of Ith order

at the infinite point is treated. At this time

n=2m+l+r, r=2p (27)

is established between the network degree n and the

number of connecting unit elements r. The transformed

equation from the t-plane (the plane of a lumped element

Butterworth low-pass filter) shown in Fig. 11 to the

A-plane shown in Fig. 12 is expressed as

A2=k;/t2–l. (28)

Next, the separation transformation is executed so that

poles of n/2th order at ~ jl.0 in the A-plane become poles

of pth, (n/2 —p —m)th, and mth order at t.I’l .0, kjhl,

* jhz, respectively, in the q-plane shown in Fig, 13, The
transformed equation is as follows:

(qz+ l~(q’+ h:)”/2-P-m(q2+ hf)~ = (Az+ 1)”/2. (29)

Further, the q-plane is transformed to the S-plane shown

in Fig. 14 by (30)

S= Z+jfl. (30)s2=(lr:-1)/(q2+@,

The S-plane is the complex frequency plane for the char-

acteristic function of the transmission-line low-pass filter

to be obtained. By use of (28)–(30) and of the relation

that the passband cutoff frequency j 1.0 in the t-plane

corresponds to j~~ in the S-plane, the direct transformed

equation from the t-plane to the S-plane is derived as

follows :

(s-z)n/z-’-m(s -2- Iy(s -Z+flp-z)m

=j2nQ;n(Q~ + I)P(l –QP-2@)m t-n, (31)

Att .

~min

d...

o X2.4 XL 3.9f IL @

FIequency (s-plane)

Fig. 10. Attenuation response of the transmission-line low-pass filter
with poles of mth order at t jflP in the stopband.
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plane is expressed as

K(s)= cKs”/[(l - Szy(sz+a;)m] (32)

where CK is a real constant. As the operating attenuation

function L(n) is expressed by (19), the frequency fl~

providing the minimum attenuation in the stopband is

obtained by dL( jQ)/ dQ = O, which is the positive solution

fulfilling the following equation:

(r2-2n2-2p)-Q:+ [(2p -ln).Q; +n-2rn].$2; -n-Q; =o.

(33)

Also, from lK(jQ~)l 2= 10°”]”~x — 1 and lK(jfl~)12= 100’lafi

– 1, the relation between GP and fl~, GA is derived as

follows:

‘Im + a: (Q2 + l)p’ma;jmk#’W;@l:(Q; + 1)
Q:=

k;%:im(sl: + l)p’m + (flj + l)p’mfl;jm “

(34)

When (34) is substituted into (33) and !2P is eliminated

(Q; +1) p/%@’’-2[(2m2m –2p). fl:+((21– ~)

“Q; +n–21n)” Qj-n” Q;]

-2mk~/n-f7j/m(~;+ 1~1~+’ =0 (35)

is obtained. When ati~, a~m, and ~~ are given as the

specification, fl~ fulfilling the specification can be ob-

tained from (35), as kl is decided by (3), and the poles !ilP

can be obtained from (34). By use of the obtained flp and

(31), the stopband cutoff frequency fl~ in the S-plane and

the frequency providing the arbitrary attenuation (the

frequency in the range 0<0< ilp) can be obtained from

the t-plane.

B. Comparison of the Skirt Selectivity and Comparison of

the Delqv Characteristic

The skirt selectivity of a transmission-line low-pass

filter with poles of mth order in the stopband, of a

Chebyshev transmission-line low-pass filter, and of a

Butterworth transmission-line low-pass filter is compared

in the S-plane. n = 12, r =6, QA = 1, and am~ = 0.5(dB) are

used for each filter, and the relation between the stopband

cutoff frequency fl~ and the minimum attenuation

atin(dB) in the stopband is shown in Fig. 15. The skirt

selectivity for the filter treated in this chapter is inferior to

the Chebyshev type for m =2 as well as m =1, but it is

superior to the Butterworth type, and it is positioned

about in the middle between these two types. Next, the

comparison of the delay characteristic in the j-plane for

n = 12, r= 6, ~~ = 1, am== 0.5(dB), and ah= 40. O(dB) is

shown in Fig. 16. The delay occurring at each frequency is

normalized by the delay occurring at j= O. The delay

characteristic of the filter having poles of m = 1 or m = 2 in

the stopband is more improved than the delay characteris-

tic of the Chebyshev filter, and resembles and approaches

the delay characteristic of the Butterworth filter. Also,

Figs. 15 and 16 show the skirt selectivity and the delay

atin
m -

dB

al -

En-

9 -

UI -

31-

a -K
I

m=l, r=8

knTwRn+ r=6
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-Lo 1.5 2.0 2.5

(I9 3.0

Fig, 15, Comparison of skirt attenuation performance (n = 12).
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Fig. 16. Comparison of delay characteristics (n= 12).

characteristic for m = 1 and r= 8. (The other conditions

are the same.) The delay characteristic at this time is

superior to that of the Butterworth type for r= 6, and the

cutoff characteristic also is superior to the Butterworth

type. .

IV. DESIGN EXAMPLE

A. Design Example for a Transmission-Line Low-Pass

Filter Having Poles of mth Order and Zeros of m’ th Order

The transmission-line low-pass filter is designed on the

basis of the following specification:

maximum attenuation in the passband a~= = 0.1 (dB)

minimum attenuation in the stopband ati. =30.O(dB)

passband cutoff frequency fA =o.5fo

network degree n= 12.

As n= 12 is used, q= 2 and l= 6 are obtained from (2)

for r= 6, m= 2, and m’= 3 (by (26)). From (15), the
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I

1 , I
1.0

0.2,
I I
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I

o , I i
o 0.5 1.0 1.5 2.0

f/f(,

Fig. 17. Attenuation response of a trmsrnission-fine low-pass filte]
(n=12, m=2, m’=3, r=6).

TABLE II
CALCULATING RESULTS OF m-m EXAMPLE

n calculated At tenuat i.. ~ Calculated Attenuat i.”
“al”.. (dB) values (dB)

%, ] 0.6711611 0.1000000
I ~B 1.0874383 30.0000000

n, 0.9357692 I 0.0 0.” I 1.1001630 I 40.0000000

‘A 1.0000000 0.1000000
I n, o 1.1090934 50.0000000

~1, 1 0507095 10.0000000 1%1 1.1234S16 .

m o 1.0708674 I 2f3.0000oOO I %21 1.32745S3 30.0000000

1Y1
c1 ‘2

1“

T
, Y~ c~ Y~ C6

(a)

Y03 ’06

Yol Y02 Y04 Y05 “o-, ’08

lohm Yl
Y2 Y3 Y4 3’5 Y6 lohm

YI=O. 902630

Y~=O. 659894

Yo3=0.210944

Y07=1. 368792

0)
Y2=0. 797555 Y~=O. 528402 Y4=0.57S046

Y6=0. 532684 yol=o.670030 YOZ=0.266256

y04=l.608298 Y05=0. 378366 YOIj=0.299764

Yo~=o. 575189

Fig. 18. Realized network.

passband cutoff frequency inthe S-plane becomes QA=l.

When $lml, Qm2, Q,, and Q. are obtained from (16), (20),

and (22), and when the stopband cutoff frequency QB is

obtained from (24), the values shown in Table II are

obtained. Further, when the frequencies tlo, t20, ta, andt50

providing 10, 20, 40, 50 (dB) in the t-plane are obtained

from (4), and their corresponding frequencies Qlo, Q20, Q@,

and f+. in the S-plane are obtained from (14), the values

shown in Table II are obtained. The Newton–Raphson

method is used for the calculation for (20), (24), and (14),

and 1 x 10– 10 is used as the convergence judgment value.

The calculated values of the attenuation occurring at each

obtained frequency are shown in the right column of

Table II. When the frequencies were obtained to the 1 lth

decimal, the difference between the calculated attenuation

at each frequency and the specification or the designated

attenuation were within 1 X 10 – 9, and values sufficiently

fulfilling the specification or the designated attenuation

could be obtained from the design equation.

The attenuation characteristic at the actual frequency

range (~-plane) is shown in Fig. 17, and the low-pass filter

is obtained in the frequency range from O to jo, while the

bandstop filter is obtained in the range O to 2jW

For this case, the network synthesis is to be obtained.

The characteristic function K(S) is expressed by

K(S) =
C#6(S2 + 0.93576922)3

(36)
(1 - S2)3(S2+ 1.12348162)2

C~ = 43.6731502 is obtained from L(jL?~) = O.l(dB). From

the relation IS~(S)12 = 1 + IK(S)12, the operating transfer

factor S~(S) is obtained as follows:

S~(S)=43.6731502( S12+3.4771142S l’+8.6721537S]0

+ 15.3237456 S9+21.4304570Ss +24.1073068S7

+ 22,0984645S b+ 16.4794984S 5+ 9.8500294S4

+4.5722531S3 + 1.5521017S2 +0.3420632S

+0.0364795)/[ (1 – S2)3(S2+ 1.12348162)2 ].(37)

From S~(S) and K(S), the driving-point impedance

211(S) is obtained as follows:

S,(S)+ SB(– S)+ K(S)+ K(– S)

‘l’(S)= SB(S)– SB(– S)– K(S)+ K(– S)

=(2.0S’2+ 11.2991459 S10+23.7308198S 8+22,7699129S6

+9.8500294S4+ 1.5521017 S2+0.0364795)

/(3.4771 142S “ + 15.3237456S9 +24.1073068S7

+ 16.4794984S5 + 4.5722531 S3 + 0.3420632 S). (38)

When attention is paid to attenuation poles and the num-

ber of connecting unit elements and the removal of ele-

ments is executed from 21 I(S), the network shown in Fig.

18(a) is obtained, and it is changed further to Fig. 18(b).

Each element value is the characteristic admittance, the

values for the internal resistance of the power source and

the load resistance both being 1 Q.

B. Comparison of the Element Value

For n=12, r=6, a~== O.l(dB), and afi= 30.O(dB),

when the transmission-line low-pass filter is considered as

the transmission-line bandstop filter, the comparison of
the spread of element values (characteristic admittances)

accompanying the change of the bandwidth W (%) is

executed for the filter treated in Section II and the

elliptic-f unction type filter. Table III shows characteristic

admittances of each element in the network shown in Fig.

18(b) and the ratio of the maximum element value to the

minimum element value in case of the filter with m = 2

and m’= 3. Table IV shows the ratio of the maximum

element value to the minimum element value for the

elliptic-function type filter [6] which is synthesized with

the same network as shown in Fig. 18(b). As the band-

width becomes broad, it can be seen that the filter treated

in this paper has a smaller spread of element values than

the elliptic-function type filter for the same bandwidth.
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TABLE 111
RELATION BETWEEN ma BANDWIDTH W OF m

‘IIWWiISSION-LINE BANDSTOP FILTER AND VALUES OF ELEMENTS

(~= 12, m=2, m’=3, r=6, am== O.l(dB), a&=30.0(dB))

Y1 Y2 Y3 Y4 Y~
w(%)

~6 Yol Max, value

Y02 Y03 Y04 Y05 Y06 Y07 Yo8
Min. value

50(%)
0.976845 0.946082 0.742720 0.811922 0.840092 0.746639 0,158812
0.229700 0.025758 0,563521 0.337900 0.037888 0.475S29 0.268462 37.92

100(%)
0.902630 0.797555 0.528402 0.578046 0,659894 0.532684 0,670030
0.266256 0.210944 1.608298 0.378366 0.299764 1.368792 0.575189 7.62

110(%)
0.871513 0.7h5986 0.481975 0.526933 0.611655 0.485812 0.881456
0.253591 0.281495 1.939217 0,357494 0,396831 1.658250 0,661617 7.65

120(%)
0.831220 0.685845 0.433904 0.473978 0.558497 0,437558 1.157150
0.236313 0,368987 2.3.42427 0.330528 0.516097 2.013497 0,765494 9.91

130 (%)
0.779607 0.617599 0.384154 0.419224 0.500535 0,387761 1,519487
0.215082 0,478900 2.846455 0.2986O6 0.664876 2.459903 0.894934 13.23

TABLE IV
RSLAZYON BBTWEEN THE BANDWIDTH w OF Tm ELLIPYIC-FUNHON TYPE

TRANSMISSION-LINE FILTER AND VALUES OF THE EmMENTS

(n=12, r=6, a_ =0.l(dB), am.= 30(dB))

Y1 Y2 Y3 Y4 Y5 Y6 Yol Max. value
w(%)

Yoz Y03 Y04 Y05 Yo6 Y07 Yo8
Min. value

50 (%)
0.7k8243 0.805047 0.706962 0.675143 0.690669 0.616’2513 0.249485

0.112S99 0,017330 0.468131 0,281515 0.035208 0.527822 0.369776 46.45

100(%)
0.568883 0.657406 0.523477 0.504261 0.532452 0.400710 0.99571(3

0.098258 0,093875 1.377211 0.245869 0,218743 1.405940 o. S94712 14.98

110(%)
0.523574 0.610950 0.479573 0.463528 0.491597 0.359447 1,257359

0,0 S9245 0.117601 1.673548 0.223287 0.277115 1.684S80 1.044458 18.88

120(%)
0.475096 0.559037 0.433206 0.420123 0.454336 0.318613 1,580410

0,079437 0.145357 2.036068 0.192020 0.333861 2.006271 1.254467 25.63

130(%)
0.423507 0.499941 0.386077 0.350372 0.608907 13.2588132 1,989436

0.069227 0.178748 2.5075S6 0.035441 0.087555 2.27692S 1.913264 70.75

Here, when am and ati. are given as specifications, the

method of [6] requires more computing time than our

design method in order to obtain zeros and poles. Also, in

the method of [6], the attenuation at an obtained stop-

band cutoff frequency fulfills ah of the specification, but

when frequencies fl~,, fil~2(!il~2 > il~l) providing the

minimum attenuation in the stopband are obtained, the

attenuation at this ~~z does not fulfill ati.(dB) and it
shows a tendency to deviate from ati~. For instance, when

afi~ = 30. O(dB) is given as the specification, the attenua-

tion at ~~2 for W= 120’%0is 26.5313(dB) and the attenua-

tion at ~~z for W= 130%0 is 25.7777(dB). In our design

method, the minimum attenuation in the stop band

strictly fulfills amin(dB),

V. CONCLUSION

This paper uses the conformal mapping for the complex

frequency plane of a lumped element Butterworth low-

pass filter, the complex frequency planes of a transmis-

sion-line low-pass filter having zeros of m’th order in the

passband and poles of mth order in the stopband and of a

transmission-line low-pass filter having the Butterworth

characteristic in the passband and poles of mth order in

the stopband are derived, and the design equations strictly

fulfilling the specification are derived. The former trans-

mission-line low-pass filter has an improved skirt attenua-

tion performance than a Chebyshev transmission-line

low-pass filter, it is positioned about in the intermediate

between the Chebyshev type and the elliptic-function

type, and it has more smooth delay characteristic than

these two types. The latter transmission-line low-pass filter

has a better skirt attenuation performance than the

Butterworth low-pass filter and a better delay characteris-

tic than the Chebyshev low-pass filter. Accordingly, the

transmission-line low-pass filters treated in this paper

should be considered viable alternatives to Butterworth,

Chebyshev, and elliptic-function filters, The design curves

given in Figs. 6 and 7 are useful for many practical
applications.

APPENDIX

Equation (10) can be obtained as follows: When the

negative line charge – nQ/2 is placed at the pole posi-

tions jl.0 and –jl,0 in the {-plane, the positive line

charge m’ Q is placed at the zero point positions j{O and

–j{o, and the positive line charge (n – 2m’)Q is placed in
the zero point at the infinite point, the amount of the total

charge becomes zero, and the complex potential ~ in the

{-plane becomes

~= –nQ/210g({–jl.0) –nQ/210g({+jl.0)

+ m’Qlog({ –j{O) + m’Qlog({ +.&)

= -Qbg({’+ l)”l’({’+{~)-m’. (39)

Next, the negative line charge –pQ is placed in the

pole position jl.0 and –jl.0 in the w-plane, the negative

line charge – (n/2 –p – m)Q is placed at the pole posi-

tions jh, and – jh ~, the negative line charge – mQ is

placed at the pole positions jhz and –jh2, the positive line

charge m’ Q is placed at the zero point positions jwo and
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–jwO, and the positive line charge (n – 2m’)Q is placed at

the zero point in the infinite point in the w-plane, so that

the amount of the total charge in the w-plane becomes

zero, and then the complex potential xW in the w-plane is

XW= –pQlog(w –jl,O) –pQlog(w+jl.0)

-(n/2-p - rn)Qlog(w-jh,)

-(n/2 -p-tn)Qlog(w+jhl)

– rnQ log (W –jk2) – rnQ log ( W +jh2)

+ m’Qlog(w ‘jWo) + rn’Qlog(w +jwO)

= - Qlog(w’+ 1)’(w2+h:)n/2-p-’”

(w’+ h;)m(w’+ w;)-m’ (40)

where Q is the unit line charge, and 1/2m is omitted.

Since the complex potential of the two-dimensional

electrostatic field is analogous to the operating transmis-

sion function of the network [13], it is necessary that (39)

and (40) become equal in order that the operating trans-

mission function may not be allowed to change by the

transformation from the {-plane to the w-plane. Accord-

ingly, by equalizing (39) to (40), the (41) (that is (10)) is

derived as follows:

(w’+ l)’(w’+h;)nt’-’- m+h:)m(wm+w’+ w;)-m’

=(~’+l)”i’({’+ {:)-m’. (41)

Equation (29) also is derived by the same method.
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