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portant in determining the frequency behavior of the
eigenvalues of the periodic structure.

VIL

We have presented wide-band equivalent circuits of
closely resonant irises in rectangular waveguides. Poles
and residues as functions of the geometry are provided so
that the user need not refer to a computer program.

The above equivalent circuits constitute the building
blocks of the network representation of an infinite wave-
guide periodically loaded with resonant irises, which we
have investigated. The particular cases of capacitively and
inductively periodically loaded waveguides are recovered
from the general solution. The same network approach
can be applied to waveguides loaded with other discon-
tinuities.

CONCLUSIONS
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Transmission Characteristics and a Design
Method of Transmission-Line Low-Pass
Filters with Multiple Pairs of Coincident

Zeros and Multiple Pairs of Coincident Poles

JUNZI HURUYA anD RISABURO SATO, FELLOW, IEEE

Abstract—The transmission characteristics and a design method are
presented for a transmission-line low-pass filter with multiple pairs of
coincident zeros in the finite frequency of the passband and multiple pairs
of coincident poles in the finite frequency of the stopband and for a
transmission-line low-pass filter with Butterworth characteristic in the
passband and muitiple pairs of coincident poles in the finite frequency of
the stopband. The former transmission-line low-pass filter shows an im-
proved skirt attenuation performance and delay characteristic than a
Chebyshev transmission-line low-pass filter in the same network degree.
The latter type of transmission-line low-pass filter shows an improved skirt
attenuation performance in comparison to a Butterworth transmission-line
low-pass filter in the same network degree, it is positioned about in the
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middle between a Butterworth type and a Chebyshev type, the delay
characteristic is improved considerably in comparison to the Chebyshev
type, and the characteristic is close to that of the Butterworth type.

With this design method, the connecting unit elements in addition to the
stubs contribute to the attenuation response. The design example is shown
on the basis of a concrete specification, and it is shown that the obtained
attenuation strictly fulfills the specification.

I. INTRODUCTION

ECENTLY, Levy [1] has shown a lumped element

rational function having single transmission zeros in
one point of the stopband of a Chebyshev low-pass filter
which shows improvement of the skirt selectivity over an
ordinary Chebyshev low-pass filter. By use of cross cou-
pling, the realization of a high frequency filter is executed.
Further, M. C. Agarwal [2] has proposed a lumped ele-
ment rational function having multiple pairs of coincident
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poles in one point of the stopband for a Chebyshev
low-pass filter.

In this paper, a transmission-line low-pass filter having
multiple pairs of coincident zeros in a finite frequency of
the passband (in addition to the zeros at the origin) and
multiple pairs of coincident poles in a finite frequency of
the stopband (including single pairs of poles), which in
regard to the attenuation characteristic shows a different
passband from filters shown in the literature [1] and [2],
but a similar stopband, is treated, and its transmission
characteristic and a design method are described. Further,
as a filter resembling those shown in the literature [3] and
[4], a transmission-line low-pass filter having the Butter-
worth characteristic in the passband and having multiple
pairs of coincident poles in the finite frequency of the
stopband is treated. For the treated transmission-line
low-pass filters, the contribution of connecting unit ele-
ments to the attenuation response in addition to stubs is
taken into consideration.

The conformal mapping is used for the complex
frequency plane of the characteristic function of a lumped
element Butterworth low-pass filter and the complex
frequency plane of the characteristic function of the above
transmission-line low-pass filter is derived, and when the
maximum attenuation in the pass-band and the minimum
attenuation in the stopband are given as specifications,
design equations under consideration of strict fulfillment
of this specification are derived.

The former transmission-line low-pass filter has an im-
proved cutoff characteristic than a Chebyshev transmis-
sion-line low-pass filter [5] for the same network degree, it
is positioned about in the middle between a Chebyshev
type and an elliptic-function type [6]-[8], and the delay
characteristic is improved over these two type of filters.
The frequency of poles and that of zeros are decided by
the assignation of a network degree, a number of connect-
ing unit elements, an order of poles and zeros, a passband
cutoff frequency, a maximum attenuation in the passband
and a minimum attenuation in the stopband, but inversely
frequencies of poles and zeros can be assigned arbitrarily.
The application in case of assigning poles and zeros can
be exemplified for a multiharmonic rejection filter [12]. It
does appear that this type of the filter can be adoptable as
that having a different transmission characteristic from
ordinary filters.

A design example for the transmission-line low-pass
filter is shown on the basis of concrete specifications.
Also, it is shown that this type of the filter treated in this
paper has a smaller spread of elements than the elliptic-
function type filter for the same bandwidth.

The latter transmission-line low-pass filter has an im-
proved cutoff characteristic than a Butterworth transmis-
sion-line low-pass filter for the same network degree, it is
positioned about in the middle between the Butterworth
type and the Chebyshev type, the delay characteristic is
improved considerably over the Chebyshev type for the
entire passband, and it resembles and approaches the
delay characteristic of the Butterworth type.
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Fig. 1. Attenuation response of the transmission-line low-pass filter
with zeros of m’th order at +j{ and poles of mth order at */Q,.

II. TransmissioN LINE FILTER WITH MULTIPLE
PAIrs OF COINCIDENT ZEROS IN THE PASSBAND AND
MUuLTIPLE PAIRS OF COINCIDENT POLES IN THE
STOPBAND

A. Derivation of Design Equations (Transformed Equations)

When the lengths of the lossless transmission-line all are
1/4 of the wavelength corresponding to the standard
frequency f,, Richards transformation [9] becomes as
follows:

S =jtan(nf/2f,) (M
so that the actual frequency range (f-plane) is trans-
formed to the S-plane. When r connecting unit elements
contribute to the attenuation response, the characteristic
function of the transmission-line filter has poles of (r/2)th
order at §= = 1.0. Therefore, as shown in Fig. 1, when a
transmission-line low-pass filter with the attenuation char-
acteristic in the S-plane has zeros of m’th order at +;Q,
in the passband, zeros of /th order at the origin, poles of
mth order at xj§, in the stopband, and poles of gth order
at the infinite point, the relation between the network
degree n and the number of connecting unit elements r is
given by

n=2m+q+r=2m'+1,

@
It is necessary to consider the (2) in order to derive the
treated transmission-line low-pass filter from the lumped
element Butterworth low-pass filter by using the confor-
mal mapping,.

When for a lumped element Butterworth low-pass filter
with a network degree of nth degree the maximum
attenuation in the passband «, (dB) and the minimum
attenuation in the stopband a,;, (dB) are given specifica-
tions, with the passband cutoff frequency ;1.0 and the
stopband cutoff frequency jk,, and the frequency jr, is
assumed to provide an arbitrary attenuation ay(dB), then
the following relation [10] holds:

ky=[ (10%1eme — 1) /(1001w — 1) ]'/2*
t,=[(10™1%— 1) /(101w — 1) ] /",

r=2p.

(3)
4)

When the complex frequency plane of this lumped ele-
ment Butterworth low-pass filter is taken as the z-plane,
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Fig. 2. ¢-plane. O zeros. X poles.
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Fig. 3. {-plane. O zeros. X poles.
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TABLE1
CORRESPONDING RELATION AMONG EACH PLANE
Plane | =0 D E A B C
£~-plane 0.0 +30Qn| t32,1 +31.0[ +3824 +Joo
t,-plane | tico | tige | £3%, | +3%a | +INZ *jl.0
w-plane | +joo | *3wa | +3wp | *iwa [+t | +31.0( +3hj | +3h,
S-plane| 0.0 #32m| 326 | +32a [ £382s| +1.0 +joo +32p

the transformed equations from the ¢-plane to the com-
plex frequency of a lumped element low-pass filter with
zeros of m’'th order in the passband (£-plane in Fig. 2)
become as follows [11]:

g (R =(1-9) " 1 Q)
Colty=(1-23)™ (6)
Co=(n=2m)"">"@m' )" /n" (1)

Q= (n—2m)Q7 /n ®

where £=3'+ jQ applies. @' is zeros of m’th order in the
£-plane, @, is the frequency providing the maximum
attenuation (peak value) in the passband of the §-plane.
The passband cutoff frequency is normalized to j1.0.

When the transformation to the {-plane shown in Fig. 3
is exccuted on the £-plane for the corresponding relation
of Table I, the transformed equation becames

$2=Q2/¢%—1. €)]
Q7 is the stopband cutoff frequency in the {-plane. Next,

the separation transformation is executed so that poles of
n/2th order at + 1.0 in the {-plane become poles of pth,
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Fig. 5. S-plane. O zeros. X poles.

(n/2—p~m)th, and mth order at =;1.0, *jh,, *jh,,
respectively, in the W-plane shown in Fig. 4, for which the
transformed equation is given by (10). (For the derivation
of (10), refer to the Appendix.)

(W2 1P (W2 + B 77 ( W2+ k)" (W2 +wd) ™™
=2+ (10)

Finally, the transformation to the S-plane shown in Fig. 5

is executed with (11) for the corresponding relation of
Table 1

S?=(r}-1)/(W?+hl), S=Z+j2. (1)

Poles at §= +1.0 have pth order, poles at *jQ, have mth
order, poles at the infinite point have ¢g(=n—2m—2p)th
order, zeros at *jQ, have m’th order, and zeros at the
origin have /(=n—2m’)th order.The S-plane is thus the
complex frequency plane for the characteristic function of
the transmission-line low-pass filter to be obtained, and
the (2) is established.

By use of the corresponding relation in Table I and (9)
to (11), the direct transformed (12) from the ¢-plane to the
S-plane can be derived

(B-1)2 7" (s 2= 1p(s 2y
(52427 (s 2+ "
=9$—2m’962m’/[$n~2m’(£2+962 ”"]. (12)

As the passband cutoff frequency j1.0 in the &-plane
corresponds to the passband cutoff frequency j, in the
S-plane, A, is obtained from (12). When the obtained 4, is
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substituted into (12)
S (11— 827 (149,282 " (149,282 ™"

(1-9)" & ~"(1+92)

-(1—93,9;2)'”(93,9(;2l—1)""' 1)
(e +ag)”
is obtained, and by use of (5)
§2n(1- $2P(1+ 9,28 " (1+ 05352 ™™
=0 n(1+ Q2 Y (1- 939, 2) (@222 - 1) ™™™ (14)

is obtained. The (14) is the direct transformation from the
t-plane to the S-plane.

When here the passband cutoff frequency f, in the
actual frequency range (f-plane) corresponding to the
passband cutoff frequency €, in the S-plane or the band-
width W (%) (in regard to f;) in case of regarding lowpass
filters as bandstop filters, is given

Q,=tan —= a —-tanw(l———vz)

2f, 2\" " 200 (15)

is obtained from (1).

As the frequency j, providing the maximum attenua-
tion in the passband of the £-plane corresponds to the
frequency 7, providing the maximum attenuation in the
passband of the S-plane, the (16) is obtained from (13) by
use of (6) to (8)

=(an1+‘719124)/(01+1) (16)
where
be, 22 +1 Q2-
(17)

The characteristic function K(S) in the S-plane is ex-
pressed as
CS" 2 (S2+Q2)™
(1- 82y (s2+22)"
where Cy is a real constant. Moreover, the operating
attenuation function L(jQ) is expressed as
L(jQ)=10log[ 1 +|K(jQ)]]. (19)

By differentiation of (19) with {, the frequency €, pro-
viding the maximum attenuation in the passband and the
frequency ©,,, providing the minimum attenuation in the
stopband can be obtained, and they are the positive
solutions of the following three degree equation in regard
to @2

9@+ [n=2m+(2p — m)@2 +(2m’ - 9) 23| ()
+ [(2m +2m’ —n)Q%— nQ+(n—2m’ —2p)912,52(2,]92
+(n—2m)R2R=0 (20)

with g=n—2m~2p. Equation (20) has two positive solu-
tions and one negative solution in regard to Q2. The

K(S)= (18)
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smaller of the positive solution is taken as Q2, and the
larger one as Q2,. Further, as the attenuation L2
occurring at the passband cutoff frequency 78, must
become «, (dB) of the specification and the minimum
attenuation L(jQ,,;) in the stopband must fulfill «_, (dB)
of the specification

IK(]-QA),2= 100.10:,,,,,_ 1 lK(ij2)|2= IOO.Iam_ 1

1)

are established. By use of (3), the relation between @, and
Q,, is derived as

(029 2+Qi)/(02+1) (22)

from (21), Where

n—2m)/m p/m m/m
&)< /m Q2 +1 02 -2
U Q2 +1 @2, -2 '
(23)

Accordingly, when e a .. and @, are specified and m,
b, and m’ are given, ©,,,, ©,.,, ©,, and {2, can be obtained
from (16), (20), and (22). By use of the obtained {2, and
. the stopband cutoff frequency and the frequency
providing the arbitrary attenuation (the frequency in the
range ,<Q<{)) in the S-plane can be obtained from
the ¢-plane (by use of values obtained by (3) and (4)) by
means of (14). In this case, the attenuation at 2,,, and 2,,,
sufficiently fulfills the specification.

= kl"/'"(

B. Relation Between the Specification and the Skirt
Attenuation

Since the stopband cutoff frequency jk, in the t-plane
corresponds to the stopband cutoff frequency J&5 in the
S-plane, §2; is obtained from (14) as follows:

ng —n(ﬂﬁ + l)p(l _929;2) = Kmkl_"(ﬂéﬂo_z— l)m’
(24)
where

Koi= @ 7(%5 4 1Y (1- 93,2, %) (@225 2= 1) ™.

(25)

As ki is decided by a_,, and a,,, of the specification as
shown in (3), the (24) shows the relation between the
specification and the network degree n, the number of
connecting unit elements r(=2p), and the stopband cutoff
frequency @, (the skirt selectivity) Now occurs the prob-
lem of how to decide the order m’ of the zero point £, in
the passband. For this, it is sufficient to obtain the m’
which provides a minimum 2, when # is held constant in
(24). In regard to the various values of n, the consolida-
tion of the results of actual calculations shows that the
best skirt selectivity is obtained when m’ is decided as
follows:

m'=(n—1)/4, for n=4n'+1
m'=(n—-2)/4, for n=4n'+2
m'=(n+1)/4, for n=4n"+3
m'=n/4, for n=4n"+4, n=123....

(26)
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Fig. 7. Relation between k and Qp.

When here the number of connecting unit ‘elements
r(=2p)=n/2 is taken for an even n, r=(n—1)/2 for an
odd n, and @, is 1 (f,=0.5f,), k(= k[) specified by the
specification and the stopband cutoff frequency £ is
shown by Figs. 6 and 7 in the graphic form for n=5 to 16.
The order m’ of Q, is decided according to (26), and when
the order m of ©, is 1 or 2, 2, is calculated from (16),
(20), (22), and (24). The network synthesis is possible by
deciding the characteristic function K(S), obtaining the
operating transfer factor S;(S) from the relation |Sz(S)
=1+|K(S)|>, and obtaining the driving-point impedance
Z,,(S) or the admittance Y,,(S) from K(S) and Sz(S).
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C. Comparison of the Skirt Selectivity and Comparison of
the Delay Characteristic

The skirt selectivity of the transmission-line low-pass
filter treated in this chapter and that of the Chebyshev
transmission-line low-pass filter [S] and that of the trans-
mission-line filter having equal ripple response in both
passbands and stopbands (elliptic-function type) [6] are
compared. When the network degree n is 12th degree, the
number of connecting unit elements r is 6, the maximum
attenuation «a,,, in the passband is 0.1(dB), and the
passband cutoff frequency &, is 1, in each filter, the
relation in the S-plane between the stopband cutoff
frequency 2, and the minimum attenuation w«,,(dB) in
the stopband for each low-pass filter can be shown graphi-
cally as shown in Fig. 8. The skirt selectivity for the filter
treated in this chapter is inferior to the elliptic-function
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type for m=2 as well as m=1, but it is improved over the
Chebyshev type, and it is positioned about in the middle
between these two types.

Next, the delay characteristics are compared. For n=
12, r=6, ,=1, a,,,=05(dB), and a,, =40.0(dB), the
delay characteristics for the actual frequency range (f-
plane) of each filter are shown in Fig. 9. The delay at each
frequency is normalized by the delay occurring at f=0
(2=0). For m=2 as well as m=1, the delay characteris-
tics have the smooth response and are improved over the
Chebyshev type and the elliptic-function type. Further-
more, Fig. 9 also shows the delay characteristic for n=12,
m=1, m'=3, and r=8 (the number of connecting unit
elements is increased by 2 while the other conditions are
unchanged), and it can be seen that the delay characteris-
tic is improved over the case of =6, and that the contri-
bution of connecting unit element to the delay character-
istic is larger than that of stubs.

III. TRANSMISSION-LINE Low-PAss FILTER WITH
MUuLTIPLE PAIRS OF COINCIDENT POLES IN THE
STOPBAND

A. Derivation of Design Equations (Transformed Equations)

A transmission-line low-pass filter as shown in Fig. 10
with Butterworth characteristic in the passband, poles of
mth order at *j{), in the stopband, and poles of /th order
at the infinite point is treated. At this time

n=2m+I+r, 27

is established between the network degree n and the
number of connecting unit elements ». The transformed
equation from the ¢-plane (the plane of a lumped element
Butterworth low-pass filter) shown in Fig. 11 to the
A-plane shown in Fig, 12 is expressed as

N=ki/2—1. (28)
Next, the separation transformation is executed so that
poles of n/2th order at +,1.0 in the A-plane become poles
of pth, (n/2—p—m)th, and mth order at +;1.0, *jh,,
+ jh,, respectively, in the 7-plane shown in Fig, 13. The
transformed equation is as follows:

(P + 1 (> + B (24 )" = A2+ 1)V2 (29)
Further, the n-plane is transformed to the S-plane shown
in Fig. 14 by (30)

§:=(ni-1)/(n*+Hd), (30)
The S-plane is the complex frequency plane for the char-
acteristic function of the transmission-line low-pass filter
to be obtained. By use of (28)—(30) and of the relation
that the passband cutoff frequency ;1.0 in the r-plane
corresponds to j2, in the S-plane, the direct transformed

equation from the 7-plane to the S-plane is derived as
follows:

(87227 P m(§ =2 1P(S 240,72
=/ QG+ 1) (1-9,722)" 1. (31)

In this case, the characteristic function K(S) in the S-

r=2p

S=3+/%.
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plane is expressed as

K(S)=C,S" /[(1 - S2)"(S2+Qj)'”] (32)

where Cy is a real constant. As the operating attenuation
function L(2) is expressed by (19), the frequency £,
providing the minimum attenuation in the stopband is
obtained by dL(jR)/dQ =0, which is the positive solution
fulfilling the following equation:

(n—2m—2p)-Q* + [(2p—m)-9§+n—2m]-ﬂfn— n-Q2=0.
(33)

Also, from |K(j€,)|* =101 —1 and |K(j2,,)? = 10°1 i

—1, the relation between @, and &, @, is derived as

follows:

kR (92, + 1) + Q392 + 1)

92
kp/m S/ ™(92, + 1™ + (9% + 1) "™

P

(34)
When (34) is substituted into (33) and (@, is eliminated

(9% + 1Y/ @/ (n—2m—2p)- ¥ +((2p = n)
Q% +n—2m)-Q%,—n- 9 |

—2mk /™92 4+ 1)/ =0 (35)

is obtained. When a,, a,.., and @, are given as the
specification, {,, fulfilling the specification can be ob-
tained from (35), as k, is decided by (3), and the poles &,
can be obtained from (34). By use of the obtained {, and
(31), the stopband cutoff frequency {2, in the S-plane and
the frequency providing the arbitrary attenuation (the
frequency in the range 0<£2<{2,) can be obtained from
the t-plane.

B. Comparison of the Skirt Selectivity and Comparison of '

the Delay Characteristic

The skirt selectivity of a transmission-line low-pass
filter with poles of mth order in the stopband, of a
Chebyshev transmission-line low-pass filter, and of a
Butterworth transmission-line low-pass filter is compared
in the S-plane. n=12, r=6, 2, =1, and a,,, =0.5(dB) are
used for each filter, and the relation between the stopband
cutoff frequency {; and the minimum attenuation
a,:,(dB) in the stopband is shown in Fig. 15. The skirt
selectivity for the filter treated in this chapter is inferior to
the Chebyshev type for m=2 as well as m=1, but it is
superior to the Butterworth type, and it is positioned
about in the middle between these two types. Next, the
comparison of the delay characteristic in the f-plane for
n=12,r=6, Q,=1, a,, =0.5(dB), and a,, =40.0(dB) is
shown in Fig. 16. The delay occurring at each frequency is
normalized by the delay occurring at f=0. The delay
characteristic of the filter having poles of m=1 or m=2 in
the stopband is more improved than the delay characteris-
tic of the Chebyshev filter, and resembles and approaches
the delay characteristic of the Butterworth filter. Also,
Figs. 15 and 16 show the skirt selectivity and the delay
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Fig. 16. Comparison of delay characteristics (n=12).

characteristic for m=1 and r=8. (The other conditions
are the same.) The delay characteristic at this time is
superior to that of the Butterworth type for r=6, and the
cutoff characteristic also is superior to the Butterworth

type. .

IV. DeEesiGN EXAMPLE

A. Design Example for a Transmission-Line Low-Pass
Filter Having Poles of mth Order and Zeros of m'th Order

The transmission-line low-pass filter is designed on the
basis of the following specification:

maximum attenuation in the passband «,,=0.1(dB)
minimum attenuation in the stopband  a,,;, =30.0(dB)
passband cutoff frequency f4=0.5f,
network degree n=12.

As n=12 is used, ¢=2 and /=6 are obtained from (2)
for r=6, m=2, and m'=3 (by (26)). From (15), the
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Fig. 17. Attenuation response of a transmission-line low-pass filter
(n=12, m=2,m' =3, r==6).
TABLE I1
CALCULATING RESULTS OF THE EXAMPLE
Q Calculated { Attenuation Q Calculated |Attenuation
values (dB) values (dB)
Omy 0.6711611 0.1000000 %33 1.0874383 30.0000000
Qo 0.9357692 0.0 Quo 1.1001630 40.0000000
2 | 1.0000000 | 0.1000000 | Qs | 1.1080934 | 50.0000000
Q1o 1 0507095 10.0000000 % 1.1234816 L
Q.0 | 1.0708674 | 20.0000000 | S, | 1.3274583 | 30.0000000
Y Y T -Lc T J‘ -L
1 =g 2 _§L1 Y3 -[-3‘14 -§L2 ¥s Tc5 Yg —]—c5
@
Y03 Y06
|Y01 Yo2 |Y04 Yos | vo7 IYOa
lohm Y3 Yy Y3 Ya ¥Ys Ye lohm
¥3=0.902630  ¥p=0.797555  ¥3=0.528402  v,=0.578046
Y5=0.659894  ¥=0.532684  Y(1=0.670030 Y,=0.266256

¥(3=0.210944
Yg7=1.368792

¥0p4=1.608298 Yq5=0.378366 Y=0.299764
¥(g=0.575189

Fig. 18. Realized network.

passband cutoff frequency in the S-plane becomes 2, = 1.
When @, ©2,,, €,, and £, are obtained from (16), (20),
and (22), and when the stopband cutoff frequency Q, is
obtained from (24), the values shown in Table II are
obtained. Further, when the frequencies #,g, 59, 749, and #s,
providing 10, 20, 40, 50 (dB) in the z-plane are obtained
from (4), and their corresponding frequencies £, 59, 24,
and 25, in the S-plane are obtained from (14), the values
shown in Table II are obtained. The Newton—Raphson
method is used for the calculation for (20), (24), and (14),
and 1x107'% is used as the convergence judgment value.
The calculated values of the attenuation occurring at each
obtained frequency are shown in the right column of
Table II. When the frequenicies were obtained to the 11th
decimal, the difference between the calculated attenuation
at each frequency and the specification or the designated
attenuation were within 1x107°, and values sufficiently
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fulfilling the specification or the designated attenuation
could be obtained from the design equation.

The attenuation characteristic at the actual frequency
range ( f-plane) is shown in Fig. 17, and the low-pass filter
is obtained in the frequency range from 0 to f,, while the
bandstop filter is obtained in the range 0 to 2f,,.

For this case, the network synthesis is to be obtained.
The characteristic function K(S) is expressed by

CS5(S%+0.9357692%)°
(1— 52%(S2+1.1234816%)

Cyx=43.6731502 is obtained from L(j2,)=0.1(dB). From
the relation |SR(S)[*=1+]|K(S)|>, the operating transfer
factor S,(S) is obtained as follows:

Sz(S)=43.6731502(S 2 +3.47711425 ' +8.67215378 1°
+15.32374565° +21.43045705 8 +24.1073068 S 7
+22.09846455 ¢ + 16.4794984.5 5 +9.8500294.5 *
+4.572253153+1.552101752 +0.3420632 S
+0.0364795) /[ (1~ $%)*($2+1.1234816%)*].(37)

K(S)= (36)

From Sg;(S) and K{(S), the driving-point impedance
Z,,(S) is obtained as follows:

Sp(S)+ Sp(—S)+ K(S)+K(-S)

S5(S)—Ss(—S)—K(S)+K(-S)

=(2.08"2+11.29914595 '°+23.7308198 5 8 +22.7699129 5 ¢
+9.85002945 * + 1552101752+ 0.0364795)
/(347711428 ' + 15.3237456 S ° +24.1073068 S
+16.47949845 5 + 4.5722531 8% +0.3420632.5).

Zu(S)=

(38)

When attention is paid to attenuation poles and the num-
ber of connecting unit elements and the removal of ele-
ments is executed from Z,,(S), the network shown in Fig.
18(a) is obtained, and it is changed further to Fig. 18(b).
Each element value is the characteristic admittance, the
values for the internal resistance of the power source and
the load resistance both being 1 Q.

B. Comparison of the Element Value

For n=12, r=6, a,,,=0.1(dB), and a,,=30.0(dB),
when the transmission-line low-pass filter is considered as
the transmission-line bandstop filter, the comparison of
the spread of element values (characteristic admittances)
accompanying the change of the bandwidth W (%) is
executed for the filter treated in Section II and the
elliptic-function type filter. Table III shows characteristic
admittances of each element in the network shown in Fig.
18(b) and the ratio of the maximum element value to the
minimum element value in case of the filter with m=2
and m’=3. Table IV shows the ratio of the maximum
element value to the minimum element value for the
elliptic-function type filter [6] which is synthesized with
the same network as shown in Fig. 18(b). As the band-
width becomes broad, it can be seen that the filter treated
in this paper has a smaller spread of element values than
the elliptic-function type filter for the same bandwidth.
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TABLE HI
RELATION BETWEEN THE BANDWIDTH W OF THE
TRANSMISSION-LINE BANDSTOP FILTER AND VALUES OF ELEMENTS
(n=12,m=2, m" =3, r=6, ay,, =0.1(dB), a,,;, =30.0(dB))

- Y1 Yy Y3 Y4 Ys Yg Yo1 Max, value
Y02 Y03 Yo4 Y05 Y06 Y07 Yog | Min. value
50(2) 0.976845 | 0.946082 | 0.742720| 0.811922 | 0.840092| 0.746639 | 0,158812 37.92
0.229700 | 0.025758 | 0,563521 | 0.337900 | 0,037888| 0.475829| 0.268462 .
100(2) 0.902630 | 0.797555 | 0.528402 | 0.578046 | 0,659894 | 0.532684 | 0.670030 7.62
0.266256 | 0.210944 | 1.608298 | 0.378366 | 0.299764 | 1.368792| 0.575189 .
110¢2) 0.871513 | 0.745986 | 0.481975 | 0.526933 | 0.611655 | 0.485812 | 0.881456 7.65
0.253591 | 0.281495 | 1,939217 | 0,357494 | 0.396831 | 1.658250 | 0,661617 :
120¢0) 0.831220 | 0.685845 | 0.433904 | 0.473978 | 0.558497 | 0,437558 { 1.157150 01
0.236313 | 0,368987 | 2.342427 | 0.330528 | 0.516097 | 2.013497 | 0,765494 9.
130¢2) 0.779607  0.617599 | 0.384154 | 0.419224 | 0.500535 | 0.387761 | 1,519487 13.23
0.215082 | 0.478900 | 2,846455 | 0.298606 | 0.664876 | 2.459903 | 0.894934 .
TABLE IV
RELATION BETWEEN THE BANDWIDTH W OF THE ELLIPTIC-FUNCTION TYPE
TRANSMISSION-LINE FILTER AND VALUES OF THE ELEMENTS
(n=12, r=6, ay,=0.1(dB), a,,,, = 30(dB))
Y1 Y2 Y3 Y4 Ys Ye Yo1 Max. value
wm Yo2 Yp3 Yo4 Yo5 Yo6 Yo7 vog | Min- value
50(%) 0.748243 | 0.805047 | 0.706962 | 0.675143 | 0.690669 | 0.616250 | 0.249485 46.45

g 0.112899 | 0.017330 | 0.468131 | 0.281515 | 0.035208 | 0.527822 | 0.369776 .
100(% 0.568883 | 0.657406 | 0.523477 | 0.504261 | 0.532452 | 0.400710 | 0.995710 14.98

@ 0.098258 | 0.093875 | 1.377211 | 0.245869 | 0.218743 | 1.405940 | 0.894712 .

Loz 0.523574 | 0.610950 | 0.479573 | 0.463528 | 0.491597 | 0.359447 | 1,257359 18.88
110 0.,089245 | 0.117601 | 1.673548 | 0.223287 | 0.277115 | 1.684880 | 1.044458 :

Y 0.475096 | 0.559037 | 0.433206 | 0.420123 | 0,454336 | 0.318613 | 1.580410 25.63
120(2) 0.079437 | 0.145357 | 2.036068 | 0.192020 | 0.333861 | 2.006271 | 1.254467 :
130(% 0.423507 | 0.499941 | 0.386077 | 0.350372 | 0.608907 | 0.258802 | 1,989436 70.75

) 0.069227 | 0.178748 | 2.507586 | 0.035441 | 0.087555 | 2.276928 | 1.913264 .

Here, when a,, and a,,, are given as specifications, the
method of [6] requires more computing time than our
design method in order to obtain zeros and poles. Also, in
the method of [6], the attenuation at an obtained stop-
band cutoff frequency fulfills a,,;, of the specification, but
when frequencies £,,;, ©,,,(R,,>%,,,) providing the
minimum attenuation in the stopband are obtained, the
attenuation at this Q,,, does not fulfill a,, (dB) and it
shows a tendency to deviate from a,;,. For instance, when
a,..=30.0(dB) is given as the specification, the attenua-
tion at Q,,, for W=120% is 26.5313(dB) and the attenua-
tion at £,,, for W=130% is 25.7777(dB). In our design
method, the minimum attenuation in the stop band
strictly fulfills «;,(dB).

V. CoNCLUSION

This paper uses the conformal mapping for the complex
frequency plane of a lumped element Butterworth low-
pass filter, the complex frequency planes of a transmis-
sion-line low-pass filter having zeros of m’th order in the
passband and poles of mth order in the stopband and of a
transmission-line low-pass filter having the Butterworth
characteristic in the passband and poles of mth order in
the stopband are derived, and the design equations strictly
fulfilling the specification are derived. The former trans-
mission-line low-pass filter has an improved skirt attenua-
tion performance than a Chebyshev transmission-line
low-pass filter, it is positioned about in the intermediate
between the Chebyshev type and the elliptic-function
type, and it has more smooth delay characteristic than

these two types. The latter transmission-line low-pass filter
has a better skirt attenuation performance than the
Butterworth low-pass filter and a better delay characteris-
tic than the Chebyshev low-pass filter. Accordingly, the
transmission-line low-pass filters treated in this paper
should be considered viable alternatives to Butterworth,
Chebyshev, and elliptic-function filters. The design curves
given in Figs. 6 and 7 are useful for many practical
applications.

APPENDIX

Equation (10) can be obtained as follows: When the
negative line charge —nQ/2 is placed at the pole posi-
tions j1.0 and —,;1.0 in the {-plane, the positive line
charge m’Q is placed at the zero point positions j¢, and
—J$o, and the positive line charge (n~2m’)Q is placed in
the zero point at the infinite point, the amount of the total .
charge becomes zero, and the complex potential X; in the
$-plane becomes

Xe = —nQ/2log($—j1.0)—nQ /2log({ +,1.0)
+m' Qlog(§ — j§o)+ m' Qlog(§ +,8,)

= - Qlog({2+1)"/%(£2+ )™ (39)

Next, the negative line charge —pQ is placed in the
pole position j1.0 and —;1.0 in the w-plane, the negative
line charge —(n/2—p—m)Q is placed at the pole posi-
tions jh; and —jh,, the negative line charge —mQ is
placed at the pole positions jh, and — jh,, the positive line
charge m’Q is placed at the zero point positions jw, and



874

—jw,, and the positive line charge (n —2m")Q is placed at
the zero point in the infinite point in the w-plane, so that
the amount of the total charge in the w-plane becomes
zero, and then the complex potential x,, in the w-plane is

X = —pQlog(w—,1.0)—pQlog(w +,1.0)
—(n/2—p—m)Qlog(w—jh,)
—(n/2—p—m)Qlog(w+jh))
—mQlog(w—jh,) —mQlog(w +jh;)
+m’ Qlog(w — jwy) + m’ Qlog(w+ jwy)

= — Qlog(w?+ 1)”(w2+hf)"/2_P_m
(B (w4 nd) (40)
where Q is the unit line charge, and 1/2we is omitted.
Since the complex potential of the two-dimensional
electrostatic field is analogous to the operating transmis-
sion function of the network [13], it is necessary that (39)
and (40) become equal in order that the operating trans-
mission function may not be allowed to change by the
transformation from the {-plane to the w-plane. Accord-
ingly, by equalizing (39) to (40), the (41) (that is (10)) is
derived as follows:

(W2 1P (w2 + B2 22 (w2 2" (WP W)™

=2+ 1) (52 +53)7". (41)
Equation (29) also is derived by the same method.

(1

[2]

[3]

(4]

(51

(6}

{7

(8]

19
[10]
{11]

[12]

{13]
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